- Home
- Viewing Talks
- EaStCHEM Colloquia
- Physics and Astronomy Colloquia
- Irvine Lectures
- Photonics Seminar
- Special Seminars
- Synthesis Seminars
- Cond Mat Seminars
- Organic Semiconductor Centre
- Theoretical Physics Discussion Group
- ScotCHEM Colloquia
- History of Mathematics
- RSC Award Lectures
- Toy List
- Special Mini-Symposium - Structural Chemistry at Central Facilities
- Strong coupling seminars
- Materials and Energy Special Seminars
- ScotCHEM Polymer and Soft Materials Conference
Viewing upcoming talks containing the keyword: 19
-
EaStCHEM Colloquia
Genomes, genes and technology
Speaker: Sir Ed Southern (Oxford)
Prof Sir Ed Southern, FRS Oxford University, Professor of Biochemistry Emeritus The focus of this lecture will be discussing technology development for genomic and functional genomics analyses.In the mid-1970s, Ed Southern developed a technique for transferring DNA from gels onto nitrocellulose paper; the Southern blotting. It quickly became a widespread technique and provided a template for mapping the human genome. The following Northern and Western blotting procedures have made a huge impact on the study of genes and proteins, significantly advancing biomedical research.Later on, Ed made another crucial contribution with the development of microarray technology which allows parallelising large screening of biological material. Microarrays are widely used both in basic research as well as in clinical diagnostic settings.Ed Southern, who is a Fellow of the Royal Society, has received the Royal Medal of the Royal Society of London in 1998, was made a Knight Bachelor in the June 2003 and was awarded the Lasker Award in 2005. Currently, Ed Southern is the Founder, Chairman and Chief Science Advisor of Oxford Gene Technology. http://www.ogt.co.uk/about/company/management/board_members/professor_sir_edwin_southern Host: Silvia Paracchini
On: October 1, 2014 From: 15h30 To: 16h30
View talk -
EaStCHEM Colloquia
TBC19
Speaker: Aron Walsh (Bath)
Coming soonOn: February 11, 2015 From: 15h30 To: 16h30
View talk -
EaStCHEM Colloquia
Development of Highly Efficient Photocatalysts for CO2 Reduction
Speaker: Prof Osamu Ishitani (Tokyo Institute of Technology)
Both the problems of the global warming and shortage of the fossil fuels have brought about great interest in photochemical utilization of CO2 with solar energy. Efficient photocatalysts for CO2 reduction must be necessary for development of such an important technology.
We have developed novel types of photocatalytic systems using metal complexes and/or semiconductors as a photocatalyst.1 In this presentation, I will focus on the architecture of two types of the photocatalysts using transition metal complexes:
(1) A mixed photocatalytic system including a ring-shaped Re(I) multinuclear complex as a photosensitizer2
(2) Ru(II)-Re(I) and Ru(II)-Re(I) supramolecular photocatalysts.3
The efficiency of the former photocatalytic system has been highest in the reported CO2-reduction photocatalysts (ï† = 82%), and the latter photocatalysts have been most robust (TON > 3000).
On: September 11, 2015 From: 15h30 To: 16h30
View talk -
Physics and Astronomy Colloquia
Multi-scale molecular engineering for nonlinear molecular photonics
Speaker: Professor Isabelle Ledoux-Rak (Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, France)
2015 Holweck Prize Lecture
Joint Physics/Chemistry Colloquium
The emergence of molecular photonics at the cross-roads of physics, chemistry and device engineering has being triggered by increasing demand in various fields such as high bitrate telecommunications, sensors, and bio-imaging. The wealth of molecular structures and the exploitation of their functional and structural flexibility opens-up new, exciting horizons for this area of research. Designing highly efficient molecules with optimised photonic properties remains a major challenge after 50 years of continuous development, based on fruitful and interdisciplinary cooperation between chemists and physicists.
In this lecture, the principles of molecular engineering for quadratic nonlinear optics will be discussed, with an emphasis on metal complexes and lanthanide derivatives, on nonlinear optical characterization methods. This will be followed by a review of intermolecular interactions and various orientation methods, in order to bridge the gap between molecules to materials, towards a wide range of applications. Finally, perspectives will be provided on molecular photonics towards device–rel.
On: September 16, 2015 From: 17h15 To: 18h30
View talk -
Physics and Astronomy Colloquia
Multiferroics
Speaker: Prof James F Scott (University of St Andrews)
Multiferroics are crystals that simultaneously exhibit ferromagnetism and ferroelectricity (and usually ferroelasticity, which is hysteretic stress/strain). In some cases the ferromagnetism is actually created by the ferroelectricity, by causing the spins to cant [via Dzyaloshinskii-Moriya anisotropic exchange: P.(L x M)]. These materials have become very popular in part due to the interesting new physics, previously neglected because the effects require very low crystal symmetry, and because they offer the promise of new kinds of memory devices, including voltage-tunable magnetic tunnel junctions and four-state memories (+P,+M; +P,-M; -P,+M; -P,-M) which would be vastly superior to the usual binary (0,1) Boolean algebra. At St. Andrews I am experimentally studying GaFeO3 and Pb[Fe(1/2)Ta(1/2)]y[Ti(1/2)Zr(1/2)(1-y)]O3.
On: September 25, 2015 From: 10h00 To: 11h00
View talk -
EaStCHEM Colloquia
Much ado about nothings: the behaviour of oxygen vacancies in SrTiO3
Speaker: Dr Roger De Souza (RWTH Aachen)
There is renewed interest in the behaviour of point defects in bulk SrTiO3 and at its extended defects due to the material's possible application in all-oxide electronics and as a memristive device. The combination of 18O/16O exchange and Secondary Ion Mass Spectrometry (SIMS) analysis constitutes a powerful tool for probing the behaviour of oxygen vacancies in oxides. In this contribution, after a brief introduction to the technique and its capabilities and limitations, I demonstrate the application of this method to investigating the behaviour of oxygen vacancies in SrTiO3 and at its extended defects (dislocations, surfaces, hetero-interfaces). Three systems will be examined: (1) single crystal SrTiO3 substrates; (2) low-angle grain boundaries in SrTiO3 comprising periodic arrays of edge dislocations; and (3) thin films samples. In general, I will emphasize the need to combine experimental and computational approaches, and I will draw attention to current challenges and outstanding problems.
On: September 30, 2015 From: 15h30 To: 16h30
View talk