Thermally Activated Delayed Fluorescence and Room Temperature Phosphorescence: Molecular Designs, Synthesis and Optoelectronic Properties

Main list: EaStCHEM Colloquia

Abstract

Prof Martin Bryce
Durham
Thermally Activated Delayed Fluorescence and Room Temperature Phosphorescence: Molecular Designs, Synthesis and Optoelectronic Properties Martin R. Bryce Department of Chemistry, Durham University South Road, Durham DH1 3LE, U.K. m.r.bryce@durham.ac.uk
Thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) can be induced and controlled by precise molecular design of donor -acceptor linked molecules, with particular emphasis on the extent of intramolecular charge transf er, the rigidity of the molecular framework and the dihedral angle between the donor and acceptor units, imparted by functionalization of the sub -units. These features have been rationally designed simultaneously to mo dulate the molecules’ singlet -triplet gap and the rate of intersystem crossing for efficient utilization of triplet states. Representative building blocks include: phenothiazine, acridine and triazatruxene as donors, and dibenzothiophene -S,S -dioxide and 9,9 -dimethylthioxanthene -S,S -dioxide as acceptor units. Obtaining deep -blue TADF has been a particular focus of our work. Molecular design s, synthesis, photophysical studies, theoretical calculations and high efficiency organic light -emitting device ( OLED ) data will be presented from our collab oration with the groups of Andrew P. Monkman and Fernando B. Dias (Durham University, U.K.), and Thomas J. Penfold (Newcastle University, U.K.). References 1. Y. Liu, C. Li, Z. Ren, S. Yan and M. R. Bryce, All -Organic Therm ally Activated Delayed Fluorescence Materials for Organic Light - Emitting Diodes. Nat. Rev. Mater. 2018 , 3, 18020. 2. F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce and A. P. Monkman, Trip let Harvesting wi th 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in TADF Emitters, Adv. Mater. 2013 , 25 , 3707 -3714. 3. J. S. Ward, R. S. Nobuyasu, A. S. Batsanov, P. Data, A. P. Monkman, F. B. Dias and M. R. Bryce, The Interplay of Thermally Activated De layed Fluorescence (TADF) and Room Temperature Organic Phosphorescence in Sterically -Constrained Donor - Acceptor Charge -Transfer Molecules, Chem. Commun. 2016 , 52, 2612 -2615. 4. P. L. dos Santos, J. S. Ward, M. R. Bryce and A. P. Monkman, Using Host -Guest Int eractions to Optimize the Efficiency of TADF OLEDs. J. Phys. Chem. Lett. 2016 , 7, 3341 -3346. 5. M. K. Etherington, F. Franchello, J. Gibson, T. Northey, J. Santos, J. S. Ward, H. F. Higginbotham, P. Data, A. Kurowska, P. L. Dos Santos, D. R. Graves, A. S. Ba tsanov, F. B. Dias, M. R. Bryce, T. J. Penfold and A. P. Monkman, Regio - and Conformational Isomerization Critical to Design of Efficient Thermally -Activated Delayed Fluorescence Emitters. Nat. Commun. 2017 , 8, 14987 -14997. 6. P. Stachelek, J. S. Ward, P. L. dos Santos, A. Danos, M. Colella, N. Haase, S. J. Raynes, A. S. Batsanov, M. R. Bryce and A. P. Monkman, Molecular Design Strategies for Color Tuning of Blue TADF Emitters. ACS. Appl. Mater. Interfaces 2019 , 11 , 27125 - 27133. 7. R. Huang, N. A. Kukhta, J. S. Ward, A. Danos, A. S. Batsanov, M. R. Bryce and F. B. Dias, Balancing Charge -Transfer Strength and Triplet States for Deep -Blue Thermally Activated Delayed Fluorescence with an Unconventional Electron Rich Dibenzothiophene Acceptor, J. Mater. Chem. C 2019 , DOI: 10.1039/c9tc02175b.
Download PDF

  • Venue

    Theatre C, Purdie

  • Date

    November 19, 2019

  • Time

    From: 14h00 To: 15h00

  • Sponsor

    University of St Andrews
    The oldest university in Scotland, with international renown for both research and education of undergraduates and postgraduates.

Go Back

Viewed: 128 time(s)